			S III CS, I	IS (I)
A-PD)F Wat	tern	hark DEMO: Purchase from www.A-PDF.com to remove the watermark	Ú
5	USN			MAT31
	Tim	ne: 3	Third Semester B.E. Degree Examination, Dec.2015/Jan.2016 Engineering Mathematics – III 3 hrs. Max. Max Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.	rks:100
			PART – A	
ed as malpractice.	1	а.	For the function : $f(x) = \begin{cases} x & \text{in } 0 < x < \pi \\ x - 2\pi & \pi < x < 2\pi \end{cases}$ Find the Fourier series expansion and hence deduce the result $\pi = 1, 1, 1$	
s. e treate			That the rounce series expansion and hence deduce the result $-\frac{1}{4} = 1 - \frac{1}{3} + \frac{1}{5}$	 (07 Marks)
k page will be		b.	Obtain the half range Fourier cosine series of the function $f(x) = x(\ell - x)$ in $0 \le x \le \ell$	l.
the remaining bland end end, $42+8 = 50$,		c.	Find the constant term and first harmonic term in the Fourier expansion of y following table :	of Marks) from the
es on the second	2	0	Find the Fourier transformer of the fourtier	07 Marks)
sonal cross line d /or equation	2	a.	Find the Fourier transform of the function : $f(x) = \begin{cases} 1 & \text{for} & x \le a \\ 0 & \text{for} & x > a \end{cases} \text{ and hence evaluate : } \int_{0}^{\infty} \frac{\sin x}{x} dx . \tag{6}$	(07 Marks)
/ draw diag valuator an		b.	Obtain the Fourier sine transform of $f(x) = e^{- x }$ and hence evaluate $\int_{0}^{\infty} \frac{x \sin mx}{1 + x^2} dx$, r	n > 0.
lsorily al to e				06 Marks)
ers, compu ation, appe		C.	Solve the integral equation : $\int_{0}^{1-p} f(x) \cos px dx = \begin{cases} 1-p, & 0 \le p \le 1\\ 0, & p > 1 \end{cases}$ and hence deduce	the value
your answ of identifica			of $\int_{0}^{\infty} \frac{\sin^2 t}{t^2} dt$	07 Marks)
completing revealing o	3	a. h	Obtain the various possible solutions of the two dimensional Laplace's $u_{xx} + u_{yy} = 0$ by the method of separation of variables.	equation (07 Marks)
. On c		0.	A string is stretched and fastened to two points x apart. Motion is started by disp.	lacing the
lote : 1			string in the form $y = a \sin\left(\frac{1}{k}\right)$ from which it is released at time $t = 0$. Show	v that the
rtant N			displacement of any point at a distance 'x' from one end at time 't' is $u(x, t) = a \sin \left(\frac{\pi x}{\pi ct}\right) = c \sin \left(\frac{\pi ct}{\pi ct}\right)$	given by
Impo			$y(x, t) = a \sin\left(\frac{1}{\ell}\right) \cos\left(\frac{1}{\ell}\right). $	06 Marks)
		C.	Ubtain the D Alembert's solution of the wave equation $u_{tt} = c^2 u_{xx}$ subject to the c $u(x, 0) = f(x)$ and $\frac{\partial u}{\partial u}(x, 0) = a$	onditions
			∂t	of marks)

10MAT31

4	a.	For the following data fit an exponential curve of the form $y = a e^{bx}$ by the meth	od of least
		squares :	
		x 5 6 7 8 9 10	
		y 133 55 23 7 2 2	
			(07 Marks)
	b.	Solve the following LPP graphically :	
		Minimize $Z = 20x + 10y$	
		Subject to the constraints : $x + 2y \le 40$	
		$3x + y \ge 30$	
	-	$4x + 3y \ge 60$	
		$x \ge 0$ and $y \ge 0$.	(06 Marks)
	c.	Using Simplex method, solve the following LPP :	
		Maximize : $Z = 2x + 4y$	
		Subject to the constraints $3x + y \le 22$	
		$2x + 3y \le 24$	
		$x \ge 0$ and $y \ge 0$.	(07 Marks)

PART – B

- 5 a. Using the Regula Falsi method to find the fourth root of 12 correct to three decimal places. (07 Marks)
 - b. Apply Gauss Seidal method, to solve the following of equations correct to three decimal places :

6x + 15y + 2z = 72 x + y + 54z = 110 27x + 6y - z = 8.5(carry out 3 iterations).

(06 Marks)

c. Using Rayleigh power method, determine the largest eigen value and the corresponding eigen vector, of the matrix A in six iterations. Choose [1 1 1]^T as the initial eigen vector :

 $\mathbf{A} = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}.$

(07 Marks)

6 a. Using suitable interpolation formulae, find y(38) and y(85) for the following data :

X	40	50	60	70	80	90
у	184	204	226	250	276	304

(07 Marks)

- b. If y(0) = -12, y(1) = 0, y(3) = 6 and y(4) = 12, find the Lagrange's interpolation polynomial and estimate y at x = 2. (06 Marks)
- c. By applying Weddle's rule, evaluate : $\int_{0}^{1} \frac{x dx}{1 + x^{2}} by \text{ considering seven ordinates. Hence find}$

the value of \log_e^2 .

(07 Marks)

7 a. Using finite difference equation, solve $\frac{\partial^2 u}{\partial t^2} = 4 \frac{\partial^2 u}{\partial x^2}$ subject to u(0, t) = u(4, t) = 0,

 $u_t(x, 0) = 0$ and u(x, 0) = x(4 - x) upto four time steps. Choose h = 1 and k = 0.5. (07 Marks)

- b. Solve the equation $u_t = u_{xx}$ subject to the conditions u(0, t) = 0, u(1, t) = 0, $u(x, 0) = \sin(\pi x)$ for $0 \le t \le 0.1$ by taking h = 0.2. (06 Marks)
- c. Solve the elliptic equation $u_{xx} + u_{yy} = 0$ for the following square mesh with boundary values as shown. Find the first iterative values of $u_i(i = 1 9)$ to the nearest integer. (07 Marks)

8	a.	Find the z – transform of $2n + \sin(n\pi/4) + 1$.	(07 Marks)
	b.	Obtain the inverse z – transform of $\frac{2z^2+3z}{(z+2)(z-4)}$.	(06 Marks)
	C.	Using z – transform, solve the following difference equation :	
		$u_{n+2} + 2u_{n+1} + u_n = n$ with $u_0 = u_1 = 0$.	(07 Marks)

Third Semester B.E. Degree Examination, Dec.2015/Jan.2016

Electronic Circuits

Time: 3 hrs.

USN

1

Max. Marks:100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- What is an operating point? How to choose an operating point for faithful amplification of a. an input signal? (06 Marks)
 - Derive the expressions for the operation point in voltage divider bias configuration. Use b. accurate method for analysis. (08 Marks)
 - c. For the circuit shown in Fig.Q1(c), calculate I_B, I_C, V_{CE}, V_C, V_B and V_E. Assume $\beta = 100$ and $V_{BE} = 0.7V$ (06 Marks)

2 Bring out the difference between Bipolar Junction Transistors and Field effect Transistors a. (05 Marks)

		(
b.	Explain the construction and working of N - channel depletion mode MOSFET	along with
	its characteristic curves.	(10 Marks)
C.	List and briefly explain some applications of field effect transistors.	(05 Marks)

- and briefly explain some applications of field effect transistors.
- 3 Define the following terms with reference to photo sensors a.
 - i) Responsivity

C.

- ii) Response time
- iii) Noise equivalent power
- iv) Spectral Response.
- Explain the working of a photo diode along with its VI characteristics. b. (07 Marks)
- Write a short note on Liquid crystal displays. C.
- 4 With a neat diagram, explain the h – parameter model for common – emitter transistor a. configuration. (08 Marks)
 - b. Explain bandwidth with reference to an amplifier. What are the factors affecting it?
 - (05 Marks) Explain the importance of cascaded connection of amplifiers, with a diagram. (07 Marks)

(08 Marks)

(05 Marks)

PART – B

- Classify large signal amplifier and make a suitable comparison. 5 (10 Marks) a. With a block diagram explain the working of Negative feedback amplifiers. How is gain b. affected in these amplifiers? (10 Marks)
- Explain Barkhausen criterion. 6 a. (06 Marks) Determine the gain and phase shift for an oscillator circuit with a 1% positive feedback and b. a two stage CE configuration. (04 Marks)
 - Explain the working of an Astable Multivibrator with necessary diagrams and expression for C. frequency of oscillations. (10 Marks)
- What is voltage Regulation? With a neat circuit diagram explain the working of a Buck 7 a. Regulator. (12 Marks)
 - b. Compare linear power supplies with switched mode power supplies. (03 Marks)
 - A regulated power supply provides a ripple rejection of 80dB. If the ripple voltage in an C. unregulated input were 2V, determine the output ripple. (05 Marks)
- Discuss any five performance parameters of an operational Amplifier. 8 a. (05 Marks) Explain with neat diagrams, the working of low-pass and high pass filters using operational b. amplifiers. (08 Marks)
 - c. For the relaxation oscillator circuit in Fig.Q8(c), determine the peak to peak amplitude and frequency of the square wave output given that saturation output voltage of op-amp is \pm 12.5V at power supply voltages of \pm 15V. (07 Marks)

4

USN												10CS33
		Thi	rd	Se	me	ste	r B	3.I	E. I)egr	」 ree Examination. Dec.2015/Jan.201	6
										Lo	ogic Design	
Tim	e: 3	hrs.									Max. Ma	arks:100
No	te:	Ansi	wer	anj	v F	IVE	E fu		que	stion	ns, selecting atleast TWO questions from ea	ach part.
											PART - A	
1	a.	Wha	t is	Log	gic g	gate	? Sta	ate	e and	l prov	ve De Morgan's theorems.	(07 Marks)
	b.	logi	cribe c.	e po	SILL	ve a	ndi	neg	gativ	log	gic. Prove "positive OR" logic equal to "Negat	(05 Marks)
	C.	Imp	leme	ent t	the	follo -	win	ıg	func	tion	by using : i) Nand gates only ii) NOR gates	only.
		Y =	((A	+ B	8).C) . D						(08 Marks)
2	a.	Find	the	mi	nim	al S	OP :	an	d m	inima	al POS of the following Boolean function using	K - Map.
	b.	ı(a, Usir	b, c, 1g Q	a) = 0.M	$= \Delta_1$ me	n (6, thoc	d sir	9, mp	10, olify	(3) +	following expression and realize it by using N	(08 Marks) Vand logic
		only	<i>.</i>	f((a, ł), c,	d) =	= Σ	2(0, 1	3, 5, 6	6, 7, 11, 14).	(10 Marks)
2	C.	Writ	teaı	note	e on	Sta	tic F	Ha	zard	•		(02 Marks)
3	a. b.	Con Mer	struc	the	thr	ulti ee d	plex	rei	r usn	ng on betw	veen decoder and demultiplexer.	(06 Marks) (03 Marks)
	c.	Writ	te th	e fo	ur c	comj	paris	SO	ns b	etwee	en PLA and PAL.	(04 Marks)
	d.	Imp A(x	leme	ent (r) =	the Σ	follo	win 2 4	ng L 6	func	tion B(x	using PLA: $y_{z} = \sum m (0, 1, 6, 7)$; $C(y_{z}, y_{z}) = \sum m (2, 6, 7)$	(07 Marks)
4	а	Witl	, ,, <u>,</u> h log	ric o	liag	ram	and	1, c 1 tı	ruth	table	(2, 3) $(2, 1, 3)$ $(2, 1, 3)$ $(2, 1, 3)$ $(2, 3)$ $(2, 3)$ $(2, 3)$ $(2, 3)$ $(2, 3)$	flon
	1	D		1		1	. 1				, explain the volking of master slave (s, k) mp	(06 Marks)
	b.	Drav	w the	e lo	gic	truti	n tat	ble	e anc	l timi	ng diagram of positive edge triggered $D - flip f$	lop. (06 Marks)
	C.	Writ	te th	e ve	erilo	g co	ode	fo	r pos	sitive	edge triggered J.K flip flop.	(03 Marks)
	u.	vv iti	n nea	at d	lagr	am,	exp	na	in th	ie wo	PADT - D	(05 Marks)
5	a.	Writ	te a 1	note	e on	clas	ssifi	ica	tion	s of F	Registers.	(04 Marks)
	b.	Witl	h ne	at	diag	gram	an	nd	tim	ing d	liagram, explain the working of Serial in -	Serial out
	c.	regi: Writ	ster. te a	Foi	r ex	plan g co	atio ode	n fc	cons	truct	4 bit register using J.K flip flops. Switched tail counter ii) Shift registers	(10 Marks) s of 5 bits
		cons	struc	ted	usi	ng E)-fli	p 1	flops	5.		(06 Marks)
6	a.	Wri	te th	e co	omp	aris	on b	pet	wee	n Syr	nchronous and Asynchronous counter.	(04 Marks)
	b.	Des usin	ign : g 74	: 1) .90	a and	divi 749	$\frac{de}{2}$ IC	by C.	/8	coun	ter using 7493 and 7492 IC 11) modulo I	20 counter (08 Marks)
	c.	Des	ign a	a mo	od 6	o coi	inte	er u	using	, J.K	flip flops and K – map simplification method.	(08 Marks)
7	a.	Exp	lain	the	diff	ferer	nce l	be	twee	en Me	ealy model and Moore model.	(05 Marks)
	b.	Des Hov	ign a	a M es s	ealy tate	trar	e se	equ	uenc dia	e det	ector to detect a serial i/p sequence of 101.	(10 Marks)
	0.	110 V	, 401		ale	uul	GIUN	511	anaj	Stant	or a moore machine after nom werdy machine	(05 Marks)
8	a.	Exp	lain	wit	h ne	eat d	iagr	rar	n, sı	icces	sive approximation A/D converter.	(06 Marks)
	b.	Exp Writ	lain te sh	wit	h ne	eat d	hagr n ·	rar	n, co	ounte	r method of A/D conversion.	(06 Marks)
	0.	i) I	Bina	ry le	oad	er	ii`)	Diff	erend	ces between D/A and A/D converters.	(08 Marks)

USN										10CS34
		Th	ind	Sa		ato	D			$\mathbf{E}_{\mathbf{r}} = \mathbf{E}_{\mathbf{r}} = $
	Discrete Mathematical Structures									
Tin	ne: 1	3 hrs.				50			Iau	Max. Marks:100
						No	te:	Answ	er F	IVE full questions, selecting
								at lea	st T	<i>WO questions from each part.</i>
1	a.	Defi	ne s	vmn	netr	ric d	iffe	rence	of tw	$\underline{PARI} - \underline{A}$ o sets Also prove by using Venn diagram for any three
		sets	A, B	, C	(A	$\Delta B)$	ΔC	$= A\Delta($	BΔC)	(06 Marks)
	b.	(i)	Wı	rite t	the	dua	sta	temen	t for t	he set theoretic results,
			u :	U =	(A	$\cap B$	$) \cup$	$(A \cap \overline{I})$	$\overline{\mathbf{s}}) \cup (\overline{\mathbf{s}})$	$\overline{A} \cap B ig) \cup \left(\overline{A} \cap \overline{B} \right)$
		(ii)	Us	ing	the	law	s of	set the	eory s	simplify: $\overline{(A \cup B) \cap C} \cup \overline{B}$. (03 Marks)
	C.	A st	uder	nt vi	sits	an	arca	ade ea	ch da	y after school and plays one game of either Laser man,
		play	iped s ead	e or	spa f th	ice c ie tł	ree	types	at le	low many ways can he play one game each day so that he ast once during a given school week? (Monday through
		Frid	ay).					cypes	at ie	(06 Marks)
	d.	An i	nteg	er is	sel	ecte	ed at	rando	m fro	om 3 through 17 inclusive. If A is the event that a number
		$\Pr(A$	A), I	oy. Pr(B	$\frac{5}{15}$	enc Pr(A	$A \cap$	n and B), P	B is tr $(A \cup$	The event that the choosen number exceeds 10. Determine (05 Marks)
2	a.	Prov	/e	the	:	fol	lowi	ing	logic	cal equivalence without using truth table.
		[¬p	$\wedge (-$	$q \wedge$	r)] \	√ (q	$\wedge r$) v (p /	∖r)¢	>r. (06 Marks)
	b.	Defi	ne	1	Tau	tolo r	gy.	E	xami	ne whether the compound proposition
	C	[(p \	∕q)- blich	$\rightarrow r$	\leftrightarrow	[¬r	\rightarrow -	$\neg(p \lor a)$]] is	a Tautology. (07 Marks)
	C.	Esta	p -	$\rightarrow q$	Val	lan	y 01	the ar	gume	mt:
			q -	→ (r	\wedge S)				
			-1	• ~ (-	¬t∖	/ u)				
		_	p /	∧ t						
3	a.	Writ	e do	u wn 1	the	con	vers	e. inve	erse a	nd contra positive of . (07 Marks)
		$"\forall x$	$ x^{2} -$	+ 4x	- 2	21>	0 -	→[(x >	3) v ($(x < -7)] \tag{03 Marks}$
	b.	Let	p(x)	: x ²	-7	'x +	10 =	=0, q	(x):x	$x^2 - 2x - 3 = 0$, $r(x): x < 0$. Determine the truth or falsity
		of th	ne sta	atem	nent	for	wh	ich the	univ	verse contains only the integers 2 and 5. If a statement is
		talse	e, pro	vide	ead		nter 1	examp	ole.	$q(\mathbf{x}) \rightarrow r(\mathbf{x})$ $\vdots \vdots \neg r[q(\mathbf{x}) \rightarrow r(\mathbf{x})]$
		iv)	x[p(. ∃v[n/	$(\mathbf{x}) =$		(\mathbf{x})]	11) V X [$q(x) \to f(x) \qquad \text{in} \exists x [q(x) \to f(x)] $ (05 Marka)
	c.	Dete	ermin	ne th	ne t	ruth	val	ue of	each	of the following quantified statements for the set of all
		non-	zero	inte	eger	s:				
		i) ∃	x,∃y	/[xy	= 1])	ii)	$\forall x, \exists$	$\exists y[xy=1] \qquad \text{iii}) \ \exists x, \exists y[(2x+y=5) \land (x-3y=-8)]$
	d	iv) E	∃x,∃ ⊾lial	y[(3	x –	y =	17)	$\wedge (2x)$	+ 4y :	$= 3)] \qquad \text{v}) \exists x, \forall y[xy=1]. \qquad (05 \text{ Marks})$
	u.	$\forall \mathbf{x}$	$\int n(x)$	$) \vee 0$	val $i(x)$		y 01	the to	llow1	ng argument,
		∃x.		x)]	1(1)	1				
		$\forall x,$	[¬q(x) v	r()	()]				
		$\forall x,$	s(x)	\rightarrow	$\neg r($	x)]				
			∴∃x·	$\neg s()$	()					(07 Marks)

5

a. Define the well-ordering principle. By using mathematical induction prove that, 4 $\frac{1}{2.5} + \frac{1}{5.8} + \frac{1}{7.11} + \dots + \frac{1}{(3n-1)(3n+2)} = \frac{n}{6n+4}$ (07 Marks) b. If F_0, F_1, F_2 are Fibonacci numbers, prove that $\sum_{i=1}^{n} F_i^2 = F_n \times F_{n+1}$. (07 Marks) The Ackermann's numbers $A_{m,n}$ are defined recursively for m, $n \in N$ as follows: C. $A_{0,n} = n+1$ for $n \ge 0$ $A_{m,0} = A_{m-1,1}$ for m>0 $A_{m,n} = A_{m-1,P}$ where $P = A_{m,n-1}$ for m, n>0. Prove that $A_{1,n} = n+2$ for all $n \in N$.(06 Marks) $\mathbf{PART} - \mathbf{B}$ a. Define equivalence relation and equivalence class with one example. (06 Marks) 5 b. Let $A = \{1, 2, 3, 4, 6\}$, R be a relation on A defined by aRb if and only if 'a' is a multiple of 'b'. Represent the relation R as a matrix and draw its digraph. (06 Marks) c. Let A = {1,2, 3, 4, 5}, A relation R on A × A by $(x_1, y_1)R(x_2, y_2)$ if and only if $x_1 + y_1 = x_2 + y_2$. Determine the partition of A × A induced by R. (04 Marks) d. Consider the Hasse diagram of a POSET (A,R) given below: If $B = \{c, d, e\}$, find (if they exist) (i) all upper bounds of B (ii) all lower bounds of B (iii) the least upper bound of B (iv) the greatest lower bound of B. (04 Marks) Fig. Q5 (d) a. Let f: R \rightarrow R be defined by $f(x) = \begin{cases} 3x-5 & \text{for } x > 0 \\ -3x+1 & \text{for } x \le 0 \end{cases}$ find $f^{1}(3), f^{1}(-6), f^{-1}([-5,5])$ and 6 $f^{-1}([-6,5])$. (05 Marks) b. If f is a real valued function defined by $f(x) = x^2 + 1 \forall x \in \mathbb{R}$. Find the images of the following: (i) $A_1 = \{2, 3\}$ (ii) $A_2 = \{-2, 0, 3\}$ (iii) $A_3 = \{0, 1\}$ (iv) $A_4 = \{-6, 3\}$ (05 Marks) State the pigeon hole principle. Prove that in any set of 29 persons at least five persons must C. have been born on the same day of the week. (04 Marks) d. What is Invertible function? For the invertible functions $f: A \rightarrow B$ and $g: B \rightarrow C$, prove that $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$. (06 Marks) a. Define subgroup of a group. Prove that H is a subgroup of a group G if and only if for all 7 a, b \in H, ab⁻¹ \in H (06 Marks) b. For a group G, prove that the function $f: G \rightarrow G$ defined by $f(a) = a^{-1}$ is an isomorphism if and only if G is abelian. (04 Marks) c. State and prove Lagrange's theorem. (05 Marks) A binary symmetric channel has probability P = 0.05 of incorrect transmission. If the word d. C = 011011101 is transmitted, what is the probability that, i) a double error occurs ii) a triple error occurs iii) three errors occur no two of them consecutive? (05 Marks) a. Find all integers K and m for which (z, \oplus, \odot) is a ring under the binary operations 8 $x \oplus y = x + y - K$, $x \odot y = x + y - mxy$. (05 Marks) b. What is an integral domain? Prove that every field is an integral domain. (05 Marks) c. Let C be a group code in Z_2^n . If $r \in Z_2^n$ is a received word and r is decoded as the code word. C^* , then prove that $d(C^*, r) \le d(C, r)$ for all $c \in C$. (04 Marks) d. Prove that in Z_n , [a] is a unit if and only if gcd (a, n) = 1 and find all the units in Z_{12} . (06 Marks) * * * * *

Third Semester B.E. Degree Examination, Dec.2015/Jan.2016 **Data Structures with C**

Time: 3 hrs.

Max. Marks:100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 Explain the functions supported by C to carry out dynamic memory allocation with example. a.

- (06 Marks) b. What is recursion? What are the various types of recursion? Write a recursive function to implement binary search. (07 Marks)
- Define the term "Space and time complexity". Determine the time complexity of an iterative C. and recursive functions that adds n elements of an array using tabular method. (07 Marks)
- 2 Write a note on dynamically allocated array's with example. a.
 - How would you represent two sparse polynomials using array of structures and also write a b. function to add two polynomials and give the analysis of the function. (10 Marks)
 - For the given sparse matrix A and its transpose, give the triplet representation 'A' is the C. given sparse matrix and 'B' will be its transpose.

Sparse matrix A =	25 0 0 0 81	0 12 0 0 0	0 3 0 0 0	11 0 6 0 0	$\begin{array}{ccc} 0 & -10 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$		(04 Marks)
	0	0	-18	0	0 0		

- 3 Define stack. Implement push and pop functions for stacks using arrays. a. (05 Marks) Write the postfix form of the following expressions using stack: b.
 - i) AB*C D + E/F/(G + H)
 - ii) A B/(C * D (C * D)
 - What is the advantage of circular queue over linear queue? Write insert and delete functions C. for circular implementation of queues. (05 Marks)
 - d. Evaluate the following postfix expression 623 + -382/+ *2 \$ 3 + using stack.
 - (04 Marks) Write C functions to implement the insert and delete operations on a queue using linked list. a.
 - (08 Marks) b. With the node structure show how would you store the given polynomials a and b in linked list? Write a C function for adding 2 polynomials using linked lists. (08 Marks)
 - Write a note on doubly linked list. How is it different from single linked list? C. (04 Marks)

PART - B

- What is binary tree? State its properties. How it is represented using array and linked list? a. Give example. (08 Marks) b.
 - Show the binary tree with the arithmetic expression A/B*C*D+E. Give the algorithm for inorder, preorder, postorder traversals and show the result of these traversals. (08 Marks)
 - What is heap? Explain different types of heap. C.

4

5

(06 Marks)

(06 Marks)

(04 Marks)

10C\$35

6	a.	Define binary search tree. Draw the binary search tree for the following input 14, 18 3 5 16 4 20 17 9 14 5	15, 4, 9, 7, (07 Marks)
	b.	Construct a binary tree having the following sequences:	(07 1111113)
		i) Preorder seq ABCDEFGHI ii) Inorder seq BCAEDGHEI	(05 Marks)
	0	Write a iterative search routine for a binary search tree	(05 Marks)
	C.	Define the following torms:	(05 Marks)
	a.	Define the following terms.	
		1) Forests	
		11) Graphs	(02 Marks)
		111) winner trees.	(US Marks)
_			
7	a.	Briefly explain the following with examples:	
		i) HBLT II) WBLT	(08 Marks)
	b.	Write short notes on:	
		i) Priority queues ii) Binomial heaps iii) Priority heaps iv) Fibonacci he	aps.
			(12 Marks)
0		W/ it - hard materials	
8		write short notes on:	
	a.	AVL trees.	
	b.	Red-black trees.	
	C.	Optimal binary search trees.	
	d.	Splay trees.	(20 Marks)
		* * * *	

(08 Marks)

(06 Marks)

Third Semester B.E. Degree Examination, Dec.2015/Jan.2016 Object Oriented Programming with C++

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART – A

- 1 a. State the important features of object oriented programming. Compare object oriented system with procedure oriented system. (08 Marks)
 - b. What is function overloading? Illustrate function overloading through swap function which swaps two integer, two double and two character data. (08 Marks)
 - c. Explain the working of an inline function with example (04 Marks)
- 2 a. Define the term class and objects. Write a C++ program to define a class complex with real and imaginary as data members and get_data(), add() and display_Data() as member function to read, add and display complex object. (08 Marks)
 - b. Explain with example different types of constructors.
 - c. Explain with an example the role of static data member in a class to count the number of object created in a program. (04 Marks)
 - a. Explain how "new" and "delete" operator manages memory allocation/de-allocation dynamically. (08 Marks)
 - b. What are friend functions? Why is it required? Explain with the help of a suitable example. (06 Marks)
 - c. Write a C++ program to arrange a set of integers and floating point values in ascending order by using template functions. (06 Marks)
 - a. What is inheritance? Explain with example different types of inheritance in C++. (10 Marks)
 b. With an example, explain the effect of private, protected and public access specifier. When a
 - base class is inherited by a derived class? (10 Marks)

PART – B

- 5 a. With the illustration code, explain how the constructors and destructors are involved when a derived class object is created. (10 Marks)
 - b. What is the ambiguity that might arise in multiple inheritances? How to overcome this? Explain with an example. (06 Marks)
 - c. Explain methods of restoring the original access specification of a base class members when it is inherited as private. (04 Marks)
- 6 a. What is virtual function? Explain with an example. How virtual function can be used to implement the runtime polymorphism? (08 Marks)
 - b. Explain with an example pure virtual function.
 - c. Explain how virtual functions are hierarchical with an example. (06 Marks)
 - a. What are various IOStreams in C++? Give the stream class hierarchy. (10 Marks)
 b. Describe the use of following manipulators :

 i) setw()
 ii) setfill()
 iii) setprecision()
 iv) setioflags()
 v) resetioflags(). (10 Marks)
 - Nisetw() in settin() in setprecision() iv settonags() v) resetionags(). (Io Marks)
 - a. What is exception handling? Explain with an example how exception is handled in C++. (10 Marks)
 - b. What are standard template library? List and explain any five member function from vectors and lists class in STL. (10 Marks)

* * * * *

Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

3

4

7

8

USN					

MATDIP301

8

Third Semester B.E. Degree Examination, Dec.2015/Jan.2016

Advanced Mathematics – I

Tin	ne: 1	3 hrs.	Max. Marks:100
		Note: Answer any FIVE full questions.	
1	a.	Express the following in the form $a + ib$,	
		$\frac{3}{1+i} - \frac{1}{2-i} + \frac{1}{1-i}$ and also find the conjugate.	(06 Marks)
	b.	Show that $(a + ib)^n + (a - ib)^n = 2(a^2 + b^2)^{n/2} \cos(n \tan^{-1}(b/a))$.	(07 Marks)
	C.	Find the fourth roots of $1-i\sqrt{3}$ and represent them on an argand plane.	(07 Marks)
2	a.	Find the n th derivative of cos 2x cos 3x.	(06 Marks)
	b.	If $y = e^{a \sin^{-1} x}$ then prove that $(1 - x^2)y_{n+2} - (2n+1)xy_{n+1} - (n^2 + a^2)y_n =$	0. (07 Marks)
	C.	Find the n th derivative of $\frac{x}{(x-1)(2x+3)}$.	(07 Marks)
3	a.	Find the angle between the radius vector and the tangent to the curve a	$r = a(1 - \cos\theta)$ at the
		point $\theta = \frac{\pi}{3}$.	(06 Marks)
	b.	Find the pedal equation to the curve $r = a(1 + \cos \theta)$.	(07 Marks)
	c.	Obtain the Maclaurin's series expansion of the function $e^x \sin x$.	(07 Marks)
4	a.	If $u = e^{x^3 + y^3}$, then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 3u \log u$.	(06 Marks)
	b.	If $u = f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$, prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = 0$.	(07 Marks)
	C.	If $u = x^{2} + y^{2} + z^{2}$, $v = xy + yz + zx$, $w = x + y + z$, find $J\left(\frac{u, v, w}{x, y, z}\right)$.	(07 Marks)
5	a.	Obtain the reduction formula for $I_n = \int_{0}^{\pi/2} \cos^n x dx$ where n is a positive in	nteger. (06 Marks)
	b.	Evaluate : $\int_0^{2a} \int_0^{\sqrt{2ax-x^2}} xy dy dx$	(07 Marks)
	C.	Evaluate : $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} (x + y + z) dx dy dz$.	(07 Marks)

MATDIP301.

6	a.	Prove that $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$.	(06 Marks)
	b.	Evaluate: $\int_{0}^{4} x^{3/2} (4-x)^{5/2} dx.$	(07 Marks)
	c.	Evaluate: $\int_{0}^{\infty} x^{6} e^{-3x} dx$	(07 Marks)
		6	
7	a.	Solve: $\frac{dy}{dx} + x \sin 2y = x^3 \cos^2 y$.	(06 Marks)
	b.	Solve: $(e^{y} + y \cos xy)dx + (xe^{y} + x \cos xy)dy = 0$.	(07 Marks)
	c.	Solve: $x^2ydx - (x^3 + y^3)dy = 0$.	(07 Marks)
8	a.	Solve: $\frac{d^3y}{dx^3} - 6\frac{d^2y}{dx^2} + 11\frac{dy}{dx} - 6y = 0$.	(06 Marks)
	b.	Solve : $(D^2 - 4)y = e^x + \sin 2x$.	(07 Marks)
	c.	Solve: $(D^2 + D + 1)y = 1 + x + x^2$.	(07 Marks)
